/D	20	10	0	11
(P	au	10	0	77

Reg. No.:....

Name:....

Third Semester B.Tech. Degree Examination, December 2012 (2008 Scheme)

08.301 : ENGINEERING MATHEMATICS - II (CMPUNERFHBTA)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks.

- 1. Evaluate $\iint_A xy \, dx \, dy$ where A is the domain bounded by x-axis, the ordinate x = 2a and the curve $x^2 = 4ay$.
- 2. Evaluate $\int_0^1 \int_0^1 e^{x+y+z} dx dy dz$
- 3. Write a condition for a line integral $\int_A^B \overline{F}.d\overline{r}$ is independent of the path joining the points A and B. Show that $\int_A^B \left[(2xy + z^3)dx + x^2dy + 3xz^2dz \right]$ is independent of the path joining A and B.
- 4. Obtain a Fourier series for $f(t) = 1 t^2$, $-1 \le t \le 1$.
- 5. If S is any closed surface enclosing a volume V and $\overline{F} = ax\hat{i} + by\hat{j} + cz\hat{k}$, prove that $\iint_S \overline{F}.\hat{n}ds = (a+b+c)V$.
- 6. Prove that for all values of x between $-\pi$ and π

$$\frac{1}{2}x = \sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x - \frac{1}{4}\sin 4x + \dots$$

6

7

7

7

7

- 7. Find the Fourier cosine transform of $f(x) = e^{-x}$.
- 8. Form the partial differential equation by eliminating the arbitrary constants a and b from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
- 9. Solve $z = xy p^2 q^2$.
- 10. Find a particular integral of $(D^2 4DD' + 4D'^2)z = e^{2x+y}$.

Answer one full question from each Module. Each question carries 20 marks.

MODULE-I

- 11. a) Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the same.
 - b) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 3 and z = 0.
 - c) Apply Stoke's theorem to evaluate $\int_C [(x+y)dx + (2x-z) dy + (y+z) dz]$ where C is the boundary of the triangle with vertices (0, 0, 0), (2, 0, 0) and (0, 3, 0).
- 12. a) By double integration, show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.
 - b) Using Green's theorem, evaluate $\oint_C \overline{F}.d\overline{r}$ counter clockwise around the boundary of C where $\overline{F} = \sin y \hat{i} + \cos x \hat{j}$ and C is the triangle with vertices $(0, 0), (\pi, 0)$ and $(\pi, 1)$.
 - c) If $\overline{F} = x\hat{i} + z\hat{j} + y\hat{k}$, evaluate $\iint_S \overline{F}.\hat{n}$ ds by divergence theorem where S is the hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$.

MODULE - II

13. a) If a Fourier series of e^{ax} in the interval $-\pi < x < \pi$ is

$$e^{ax} = \frac{2 \sinh a}{\pi} \left[\frac{1}{2a} - a \left(\frac{\cos x}{a^2 + 1} - \frac{\cos 2x}{a^2 + 2^2} + \frac{\cos 3x}{a^2 + 3^2} - \ldots \right) - \left(\frac{\sin x}{1^2 + a^2} - \frac{2 \sin 2x}{2^2 + a^2} + \frac{3 \sin 3x}{3^2 + a^2} - \ldots \right) \right]$$

Show that
$$\cosh ax = \frac{2a}{\pi} \sinh a\pi \left[\frac{1}{2a^2} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2 + a^2} \right].$$
 6

b) Obtain a Fourier series expansion for the function f(x) defined as

$$f(x) = \begin{cases} \pi x & \text{if } 0 \le x \le 1\\ \pi (2-x) & \text{if } 1 \le x \le 2 \end{cases}$$

c) Using the Fourier integral representation, show that

 $\int_0^\infty \frac{\omega \sin x \omega}{1 + \omega^2} \, d\omega = \frac{\pi}{2} e^{-x} (x > 0) \, .$

6

14. a) Obtain a Fourier Series expansion for $\sqrt{1-\cos x}$ in the interval $-\pi < x < \pi$.

b) Find the Fourier cosine transform of
$$f(x) = \begin{cases} x & \text{for } 0 < x < 1 \\ 2 - x & \text{for } 1 < x < 2 \end{cases}$$
 7

c) Find the Fourier sine transform of
$$f(x) = \begin{cases} e^{-x}, & 0 \le x \le b \\ 0, & x > b \end{cases}$$
.

MODULE - III

15. a) Solve
$$(mz - ny) p + (nx - lz) q = ly - mx$$
.

b) Solve $4r - 4s + t = 16 \log (x + 2y)$ where $r = \frac{\partial^2 z}{\partial x^2}$, $s = \frac{\partial^2 z}{\partial x \partial y}$ and $t = \frac{\partial^2 z}{\partial y^2}$.

c) Derive the one dimensional heat equation in the form $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$.

- 16. a) Solve $(D^2 D'^2) z = \sin 2x$.
 - b) By method of separation of variables, solve $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$ given $u = 3e^{-y}$ when x = 0.
 - c) A tightly stretched, string of length 20 cm fastened at both ends is displaced from its equilibrium, by impartius to each of its points an initial velocity given by $\mu x(20-x)$ where μ is a constant. Determine the displacement at a distance x from one end at any subsequent time t.

 $(0 < x)^{x} = 0$

THIVALITA